Optimizing SmartPlant Instrumentation Resources

FLUOR SmartPlant © Implementation Team

Copyright © 2006 Fluor Corporation all rights reserved

Optimizing Manpower Utilization

- Current Engineering and Design industries are faced with a critical manpower shortage
- The manpower shortage has also resulted in a technology gap for experienced Engineers and Designers
- SPI offers a way to reduce man-hours but only when it is used in such a way as to optimize manpower
- The Question "How much time can will SPI save me?" must be answered "None!"
- The Work Processes determine if SPI and other software are being Optimized for Manpower Utilization

Incorporate new techniques in your Work Practices for better Manpower Utilization

Automation saves time by reducing the number of hours it takes to perform a task

Work Sharing saves money by reducing the total cost per hour to perform a task

Specialization saves time by optimizing the use of skilled specialists to perform complex tasks

Simplification saves time by using "out of the box" reports and SPI project deliverables

Integration saves time by sharing data and allowing data to move electronically between applications

Automation Opportunities

- SPI can facilitate Automated tasks for both Engineering Construction and Owner Operator companies
- SPI can be used as a simple data repository and loop generator or it can be used as an "Automation Tool"
- Automation reduces the amount of manual manipulation required to perform given SPI tasks
- The degree of Automation in SPI is defined by the Following:
 - Work Processes that include Automation
 - Users trained to use SPI Automation functions
 - Project requirements and schedule

Primary Automation Function

Instrument Type Profile Table

- Wiring Presets include Control System Tag Auto-create
 - Panel Name
 - Cable Name
 - Connection Type
- Specsheet Name
 - Default Data
 - Multi-Item Form
- Dimensional Data Group
- Primary Hookup
- I/O Type
- Location
- Loop Creation and Process
 Data Workflow

-Wiring and I/Op ▼ <u>C</u> ontrol system	ofile Automatically create CS tag	Hook-up profile	
₩iring		✓ Include in BOM	
Panel name:	DEFAULT FIELD DEVICE 2-WIRE	HU type: FLOW	_
La <u>p</u> ie name:	1P#20 BK,WH 1/5	Hook-up: FLOW INSTR. BELOW RUN - LIC	100 -
Connection type:	2 In a row		
- Specification prol	ile	System I/O type profile	
Specification		✓ System I/O type AI	_
Spec <u>n</u> ame:	Diff. Pressure Instr. (flow)	Location profile	
		- ↓ocation: Field	
Copy data from:	D/P XMTR TYPE 1 👻		_
- Dimensional data	profile	-	
✓ Dimensional d	ata		
Group name:	All groups 🗸	1	
- Miscellaneous de	faults		
Skip loop crea	tion		
Process Data	workflow: process data required		
,	Territoria brosses sera lodanoa		

- New Tag Instrument Type Profile Data expansion
- Duplicating data from Tag to Tag or Loop to Loop
- Batch creation of Loops from Loop Patterns
- Browse Automation
- Spec Sheet generate from Profile
- Process data generate from Profile
- Control Systems Tag Create
- Device Wiring Create
- Report Generation from View
- Copy and Paste Buffer

INtoo	ols - DEMO - (Brows	e - DEFAULT STYLE]				_	
File	<u>M</u> odule <u>A</u> ctions D	<u>p</u> tions T <u>o</u> ols <u>W</u> indow <u>I</u>	<u>H</u> elp			_	8
Ê 🐗	🤹 🍬 🗖 📙	🗲 🎳 🗤 🔍 逡 🚆	s 👍 🍿	0 🍨	2 ?		
Seq.	Tag Number	Instrument Type	Number	Prefix	System I/	O Type Status	
1	101-ALARM-001	ALARM SIGNAL	001	101	DI		
10	101-PC -001	PERSONAL COMPUT	E1001	101			
2	101-TELE -001	TELEPHONE	001	101			
11	101-PC -002	PERSONAL COMPUT	E1002	101			
3	101-TELE -002	TELEPHONE	002	101			
12	101-PC -003	PERSONAL COMPUT	E1003	101			
4	101-TELE -003	TELEPHONE	003	101			
13	101-PC -004	PERSONAL COMPUT	E1004	101			
5	101-TELE -004	TELEPHONE	004	101			
1	101-FE -100	D/P TYPE FLOW ELE	M100	101		N	
2	101-FT -100	D/P TYPE FLOW TR/	AN 100	101	AL	N	
4	101-FV -100	CONTROL VALVE	100	101		N	
*	Clear the buffer	💫 Clear the current field	1				
			22				
I∎I		1					
			1911				
Ø 🏢	💷 🎒 🗋 🔳 🖡	🖻 🔁 🚺 🗛 🙀 🗙	Ľ.				
ady	Plant Nev	w Befinery Area: Crude A	rea III	nit Crude i	unit 1	9/5/02 04:20	i n

Spec Sheet Automation Functions

- New Tag Profile Process Data expansion
- Propagation of data from Lines or other Tags
- Unit Conversion
- Global Revisions
- Data Exchange
 - Spec Sheets
 - Calculations
 - External Editor
 - Legacy Systems
 - Simulators
- Base Conditions

INtools - DEMO	A a bian a f	Toolo	Ar Kendenne – Hel	-			_ 🗆 X
	∙ <u>A</u> cuon <u>u</u> 1 ≪⊂uu			N 🔷 🗖	ର		
	. ~ .	n≋at 774 @	- <u>x</u> (= -3.		8		
🕹 Process Data - 101-F	T -100						_ 🗆 🗵
Service Feed I	from V-8		F	Fluid			
Process Function Flow			S	itate:	Phase:		
Location Line			[L	Liquid	▼ Single phas	·e 💌	
Line Number 4"-P-	1501-11H		S	elect from:	Name:		
Line Size 4		in	μ	Jser-defined	💌 Lean Feed		
Line Schedule 80							
						al	
	2007022	20022400	0	(Maxa			
Properties:	@Minimu	m	@Maximur	n Unit	s		
Volumetric Flow	25	30	32	m³/h	@flow		
Upstream Pressure	12	13	14	bar	gage		
Temperature	150	150	150	°C	<u></u>		
Viscosity	0.1	0.1	0.1	cP	*		
Velocity	0.936	1.12	1.2	m/s	- X Base Condit	ions	X
Specific Gravity 🖉 💌	0.890	0.890	0.890	201 2010-0	Dase Conuit	iuns	<u> </u>
Vapour Pressure	0.9	0.9	0.9	bar	Base Pressure (a	abs.) 👔	bar 💌
Critical Pressure	1200			bar	Base Temperatu	re 15.5	°C 💌
					Spec Grav @Ba	ise 💌	
25							
					8		
		-					
애 💳 🛅 📻 🛕 T,	r 😰 🔛						
Ready			Plant: Ne	ew Refinerv	Area: Crude Area	Unit: Crude unit 1	9/5/02_04:40 pm

Calculation Automation Functions

- Automatic results population of Spec Sheets
- Batch Calculations for CV, PSV, FE and TW
- Unit Conversion
- Global Revisions
- Data Exchange
 - Spec Sheets
 - Process

Calculation method:	[ISA	-	
<u>F</u> low coefficient:	Cv 💌		
Noise calculation method:	Masoneilan 💌		
<u>B</u> ody type:	Single Seat Globe 🔄		
	@Minimum	@Normal	@Maximum
Critical flow factor (FI, Cf):	0.86	0.86	0.86
Pressure drop ratio factor (Xt.):	0.6213	0.6213	0.6213
	Calculate p	ressure drop ratio	o factor
<u>V</u> alve style modifier (Fd):	1	2.5	
<u>R</u> elative capacity (Cv/d²):	12.3		
	1		
Number of flow passages:			
N <u>u</u> mber of flow passages: Valve <u>s</u> ize:	2	lin	

Wiring Automation Functions

- Use Default Panels and Cables
- Duplicate Panels and Cables
- Auto-Wiring Routing Utility
- Junction Box Pre-assignment
- Automatic Cross Wiring
- Cable Router and Spooler
- Automatic Cable Schedule
- Global Revisions

FLUOR

- Automatic Report forms for all browse Views
- Global Revisions for Deliverable Documents
- Batch Printing of most common reports
- Enhanced Reports for Loops and Wiring Drawings
- All Reports Export ODBC or DXF
- Automatic Drawing Generation in:
 - Enhanced SmartLoop
 - AutoCAD
 - Microstation

Sequence of Automation

- Educate users for the Automation Function you wish to use
- Prepare the rule base or trigger data before launching the Automation Function
- Test the Automation Function to see if you are getting expected results
- Launch the Automation Function on the complete task
- Check the results of the Automation Function carefully

Do Not Misuse Automation

- Match the tool to the task. Select the Automation Function carefully.
- Clean bad data from the rule base or bad trigger data from the database.
- Validate data before and after running an Automated Function.
- Don't try and do too much with one Automated Function.
- Know the limits of automation and do not try to do complex tasks with Automated Functions

If the only tool you know how to use is a hammer; everything look like a nail.

Work Sharing Opportunities

Improved Work Sharing will increase efficiency and productivity

- High Value Resources
 - Extending SPI access to low cost centers using terminal server technology can reduce need for some expensive local manpower
- Around to clock operations
 - Global Work Sharing allows 24-7 utilization of hardware and software resources
- Extend utilization of SPI experts
 - Allow experts to access SPI in from different locations to optimize highly trained talent
- Bring more resources to a project
 - Involve Vendors and Service companies in your work processes with Work Sharing

Work Sharing High Value Resources

- High Value Work Centers
- Main Automation Contractors
- Clients access for approval cycle
- Expert Resources for specialized tasks
- Support Centers for technical assistance
- Equipment Vendors for sizing and selection
- Spread Projects across multiple EPC companies
- Collaboration across disciplines and departments

- Operations extend to 24 hours a day
- Better hardware utilization
- Better use of Licenses
- Shorten Schedules
- Faster Response
- Offset Overtime

FLUOR

- Allow your Specialized Users to work across several projects
- Use Vendor Experts
- Share Super Users
- Hosting Services
- MAC Options
- Integrators

- WEB Terminal Server Technology
- Connect using WAN & LAN
- SmartPlant Foundation
- Use Remote Access
- Import / Export
- SPI Modules

FLUOR

Using Specialized Users can improve SPI data quality and increase productivity

- Creating Specialists Train selected users in specialized tasks to allow them to be knowledge resources
- Existing Specialists Collaborate with existing experts using net meetings and forums better utilize their abilities
- Outside Specialists Use outside experts from vendors or service companies to fill gaps in resources

Make Your Own Specialists

- Create SPI Administration Specialists for configuring and implementing SPI
- Create SPI Specialists to train and support other SPI users
- Create Specialists for SPI modules and tasks that are not day to day activities
- Create SPI Specialists for tasks that are Complex or Require special knowledge
- Create Specialists to use Interfaces with Legacy Systems or External Applications
- Create IT Specialists that are familiar with installing and operating SPI, Oracle, MS SQL, Citrix
- Create Specialists for other SmartPlant Application interfaces and work processes

Using Existing Specialists

- Within most companies you have people who have particular talents that can be applied to SPI related tasks
 - Users with Excel or Access knowledge can assist with custom reports and deliverables
 - Specialty Engineers that work with only Control Valves or other Engineered items can use SPI directly to do their engineering
 - Process Engineers can use SPI to enter their process data directly into the SPI database for Control System
 - Material Managers can use the SPI Hookup module to control instrument material requirements and do Material Takeoffs
 - 3D PDS Designers can use the SPI DDP module to facilitate the loading of instrument inline data into the 3D model
 - Project Schedulers can access the SPI database to define work packages and cost systems to track progress

Using Outside SPI Specialist

Using external resources can fill gaps in in-house capabilities

- Use vendor or suppliers to do sizing calculations and selection of engineering commodities
- Use Main Automation Contractors to specify, load, configure the DCS and SIS control systems
- Use Mechanical Equipment Vendors to populate instrument spec sheets for instruments provided with their equipment
- Use Owner Operator representatives to assist in populating Operations and Maintenance data in the SPI database
- Use external IT suppliers to host and maintain the SPI Oracle, MS SQL and Citrix servers
- Use Intergraph or OSI to provide merging and data migration services

Simplification Opportunities

Streamlining your work methods can give better utilization of SPI resources

- Data Reduction Careful evaluation of required data can reduce size and content of SPI database
- Streamline Deliverables The generation of deliverables can be very time consuming and inefficient
- Simplify Work Processes Work Process need to address the capabilities of the tool to be effective
- Minimize Staffing Efficient use of personnel can optimize the use of SPI

Simplify Data Reduction

Do not fill all data fields in all tables

- Use only required data
- Simplify the content of fields
- Don't use "--" or "n/a" to show empty data fields
- Give meaning to data (don't use "Yes" / "No" data
- Do not repeat data from one table in another
- Do not create complex or lengthy naming conventions
- Keep User Defined fields and tables to a minimum

Simplify Deliverables

- Use electronic deliverables instead of paper
 - Spreadsheets instead of printed indexes
 - ODBC files can replace most paper documents
 - Acrobat PDF files can replace paper Spec sheets
- Use SPI "Out of the Box" reports
 - Don't create custom reports to emulate existing documents
- Use Enhanced Loops instead of CAD loops
- Don't try to create complex loops in SPI
- Allow construction and client access to database so they can generate their own documents

Simplify Work Processes

- Don't try to use manual work processes with SPI
- Include other disciplines in your SPI work processes
- Look at how SPI operates to develop effective Work Processes
 - Use the proper module to load and edit data specific to that module
 - Leave data in it's parent table for reports and deliverables
 - Provide for Parallel work processes instead of Sequential schedule driven work processes
 - Make Automation part of the work process!

Simplify SPI Staffing

- Use of Super Users can reduce the required number of inexperienced personnel
- Work Share the SPI user base across multiple offices for minimal staffing costs and numbers
- Use SPI Automation functions for mass loading of data and redundant tasks
- Allow SPI Specialists to work across several projects to optimize their abilities
- Rely on external SPI Experts to offset reduced staffing levels

Integration Opportunities

Integrating SPI to other applications will extend the capabilities of the tool

- SmartPlant Foundation Integration with SPF can optimize the utilization of SPI data across other Intergraph products
- Vendor Applications Integration to vendor control valve sizing and DCS configuration software will maximize the SPI data
- External Editor Using the SPI External Editor can allow mechanical vendors load some of your Spec data for you
- PDS 3D model database The SPI DDP module will integrate the SPI inline sizing data with the 3D model
- SmartPlant P&ID and Electrical The built-in SP P&ID and SPEL interfaces allow data transfer if your work processes are designed to utilize the shared data
- Import Export The ability to import and export data to and from other applications will extend your Integration capabilities

Optimizing SmartPlant Instrumentation

ASCII stupid question Get a stupid ANSI

